Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.968
Filtrar
1.
ALTEX ; 41(2): 152-178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38579692

RESUMO

Developmental neurotoxicity (DNT) testing has seen enormous progress over the last two decades. Preceding even the publication of the animal-based OECD test guideline for DNT testing in 2007, a series of non-animal technology workshops and conferences (starting in 2005) shaped a community that has delivered a comprehensive battery of in vitro test methods (IVB). Its data interpretation is covered by a very recent OECD test guidance (No. 377). Here, we aim to overview the progress in the field, focusing on the evolution of testing strategies, the role of emerging technologies, and the impact of OECD test guidelines on DNT testing. In particular, this is an example of a targeted development of an animal-free testing approach for one of the most complex hazards of chemicals to human health. These developments started literally from a blank slate, with no proposed alternative methods available. Over two decades, cutting-edge science enabled the design of a testing approach that spares animals and enables throughput for this challenging hazard. While it is evident that the field needs guidance and regulation, the massive economic impact of decreased human cognitive capacity caused by chemical exposure should be prioritized more highly. Beyond this, the claim to fame of DNT in vitro testing is the enormous scientific progress it has brought for understanding the human brain, its development, and how it can be perturbed.


Developmental neurotoxicity (DNT) testing predicts the hazard of exposure to chemicals to human brain development. Comprehensive advanced non-animal testing strategies using cutting-edge technology can now replace animal-based approaches to assess this complex hazard. These strategies can assess large numbers of chemicals more accurately and efficiently than the animal-based approach. Recent OECD test guidance has formalized this battery of in vitro test methods for DNT, marking a pivotal achievement in the field. The shift towards non-animal testing reflects both a commitment to animal welfare and a growing recognition of the economic and public health impacts associated with impaired cognitive function caused by chemical exposures. These innovations ultimately contribute to safer chemical management and better protection of human health, especially during the vulnerable stages of brain development.


Assuntos
Síndromes Neurotóxicas , Testes de Toxicidade , Animais , Humanos , Síndromes Neurotóxicas/etiologia , Modelos Animais , Alternativas aos Testes com Animais
2.
Environ Geochem Health ; 46(3): 103, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436752

RESUMO

In this study, we focused on soil contaminated by polycyclic aromatic hydrocarbons (PAHs) at typical coking-polluted sites in Beijing, conducted research on enhanced PAH bioremediation and methods to evaluate remediation effects based on toxicity testing, and examined changes in pollutant concentrations during ozone preoxidation coupled with biodegradation in test soil samples. The toxicity of mixed PAHs in soil was directly evaluated using the Ames test, and the correlation between mixed PAH mutagenicity and benzo(a)pyrene (BaP) toxicity was investigated in an effort to establish a carcinogenic risk assessment model based on biological toxicity tests to evaluate remediation effects on PAH-contaminated soil. This study provides a theoretical and methodological foundation for evaluating the effect of bioremediation on PAH-contaminated soil at industrially contaminated sites. The results revealed that the removal rate of PAHs after 5 min of O3 preoxidation and 4 weeks of soil reaction with saponin surfactants and medium was 83.22%. The soil PAH extract obtained after remediation had a positive effect on the TA98 strain at a dose of 2000 µg·dish-1, and the carcinogenic risk based on the Ames toxicity test was 8.98 times greater than that calculated by conventional carcinogenic PAH toxicity parameters. The total carcinogenic risk of the remediated soil samples was approximately one order of magnitude less than that of the original soil samples.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Pequim , Biodegradação Ambiental , Carcinogênese , Carcinógenos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Solo , Testes de Toxicidade
3.
Chemosphere ; 355: 141814, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554862

RESUMO

Evaluating the toxicity of micropollutants forms the basis for understanding their potential risks to the ecosystem and/or human health. To accurately evaluate the toxicity of micropollutants in toxicity tests, many factors have been carefully considered, while the impact of the number of test organisms on toxicity results has rarely been taken into account. In this study, the role of the organism number on the developmental toxicity of five micropollutants was investigated using embryos of the marine polychaete Platynereis dumerilii. The toxicity of hydrophobic micropollutants was found to decrease significantly with increasing the number of embryos used in the test. A quantitative model was developed to better describe how the number of embryos affected developmental toxicity. The model showed a satisfactory fit to the raw data in all scenarios tested. The intrinsic half-maximal effective concentration EC50,int was then determined using the model. For a given compound, the EC50,int was a stable parameter that did not depend on the number of test embryos and thus provided an indication of the intrinsic toxicity of the compounds tested. Compared with the EC50 values determined with the commonly used embryo number (around 120), the EC50,int values of all tested hydrophobic micropollutants were lower. The more hydrophobic the compounds tested, the more pronounced the reduction in toxicity. This suggested that hydrophobic micropollutants could be more toxic than reported in the literature. Some suggestions were also made to eliminate the effect of the number of organisms used in the toxicity evaluation.


Assuntos
Poliquetos , Poluentes Químicos da Água , Animais , Humanos , Ecossistema , Interações Hidrofóbicas e Hidrofílicas , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade
4.
Chemosphere ; 353: 141529, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428534

RESUMO

An important problem is the impact of photodegradation on product toxicity in biological tests, which may be complex and context-dependent. Previous studies have described the pharmacology of cefepime, but the toxicological effects of its photodegradation products remain largely unknown. Therefore, photodegradation studies were undertaken in conditions similar to those occurring in biological systems insilico, in vitro, in vivo and ecotoxicological experiments. The structures of four cefepime photodegradation products were determined by UPLC-MS/MS method. The calculated in silico ADMET profile indicates that carcinogenic potential is expected for compounds CP-1, cefepime, CP-2 and CP-3. The Cell Line Cytomotovity Predictor 2.0 tool was used to predict the cytotoxic effects of cefepime and related compounds in non-transformed and cancer cell lines. The results indicate that possible actions include: non-small cell lung cancer, breast adenocarcinoma, prostate cancer and papillary renal cell carcinoma. OPERA models were used to predict absorption, distribution, metabolism and excretion (ADME) endpoints, and potential bioactivity of CP-2, cefepime and CP-4. The results obtained in silico show that after 96h of exposure, cefepime, CP-1, CP-2, and CP-3 are moderately toxic in the zebrafish model, while CP-4 is highly toxic. On the contrary, cefepime is more toxic to T. platyurus (highly toxic) compared to the zebrafish model, similar to products CP-4, CP-3 and CP-2. In vitro cytotoxicity studies were performed by MTT assay and in vivo acute embryo toxicity studies using Danio rerio embryos and larvae. In vitro showed an increase in the cytotoxicity of products with the longest exposure period i.e. for 8 h. Additionally, at a concentration of 200 µg/mL, statistically significant changes in metabolic activity were observed depending on the irradiation time. In vivo studies conducted with Zebrafish showed that both cefepime and its photodegradation products have only low toxicity. Assessment of potential ecotoxicity included Microbiotests on invertebrates (Thamnotoxkit F and Daphtoxkit F), and luminescence inhibition tests (LumiMara). The observed toxicity of the tested solutions towards both Thamnocephalus platyurus and Daphnia magna indicates that the parent substance (unexposed) has lower toxicity, which increases during irradiation. The acute toxicity (Lumi Mara) of nonirradiated cefepime solution is low for all tested strains (<10%), but mixtures of cefepime and its photoproducts showed growth inhibition against all tested strains (except #6, Photobacterium phoreum). Generally, it can be concluded that after UV-Vis irradiation, the mixture of cefepime phototransformation products shows a significant increase in toxicity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Masculino , Fotólise , Testes de Toxicidade/métodos , Peixe-Zebra , Cefepima/toxicidade , Cromatografia Líquida , Espectrometria de Massas em Tandem
5.
Arch Toxicol ; 98(5): 1271-1295, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480536

RESUMO

Adult neurotoxicity (ANT) and developmental neurotoxicity (DNT) assessments aim to understand the adverse effects and underlying mechanisms of toxicants on the human nervous system. In recent years, there has been an increasing focus on the so-called new approach methodologies (NAMs). The Organization for Economic Co-operation and Development (OECD), together with European and American regulatory agencies, promote the use of validated alternative test systems, but to date, guidelines for regulatory DNT and ANT assessment rely primarily on classical animal testing. Alternative methods include both non-animal approaches and test systems on non-vertebrates (e.g., nematodes) or non-mammals (e.g., fish). Therefore, this review summarizes the recent advances of NAMs focusing on ANT and DNT and highlights the potential and current critical issues for the full implementation of these methods in the future. The status of the DNT in vitro battery (DNT IVB) is also reviewed as a first step of NAMs for the assessment of neurotoxicity in the regulatory context. Critical issues such as (i) the need for test batteries and method integration (from in silico and in vitro to in vivo alternatives, e.g., zebrafish, C. elegans) requiring interdisciplinarity to manage complexity, (ii) interlaboratory transferability, and (iii) the urgent need for method validation are discussed.


Assuntos
Caenorhabditis elegans , Síndromes Neurotóxicas , Animais , Humanos , Peixe-Zebra , Testes de Toxicidade/métodos , Síndromes Neurotóxicas/etiologia
6.
Regul Toxicol Pharmacol ; 148: 105585, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38403008

RESUMO

In 2022, the European Chemicals Agency issued advice on the selection of high dose levels for developmental and reproductive toxicity (DART) studies indicating that the highest dose tested should aim to induce clear evidence of reproductive toxicity without excessive toxicity and severe suffering in parental animals. In addition, a recent publication advocated that a 10% decrease in body weight gain should be replaced with a 10% decrease in bodyweight as a criterion for dose adequacy. Experts from the European Centre for Ecotoxicology and Toxicology of Chemicals evaluated these recent developments and their potential impact on study outcomes and interpretation and identified that the advice was not aligned with OECD test guidelines or with humane endpoints guidance. Furthermore, data analysis from DART studies indicated that a 10% decrease in maternal body weight during gestation equates to a 25% decrease in body weight gain, which differs from the consensus of experts at a 2010 ILSI/HESI workshop. Dose selection should be based on a biological approach that considers a range of other factors. Excessive dose levels that cause frank toxicity and overwhelm homeostasis should be avoided as they can give rise to effects that are not relevant to human health assessments.


Assuntos
Reprodução , Testes de Toxicidade , Humanos , Animais , Peso Corporal , Aumento de Peso , Ecotoxicologia
7.
Reprod Toxicol ; 125: 108558, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367697

RESUMO

There is growing interest in establishing alternative methods in place of conventional animal tests to assess the developmental and reproductive toxicity (DART) of chemicals. Gastruloids are 3D aggregates of pluripotent stem cells that spontaneously exhibit axial elongation morphogenesis similar to gastrulation. They have been explored as in vitro embryogenesis models for developmental and toxicological studies. Here, a mouse gastruloid-based assay was validated for DART assessment in accordance with the ICH S5(R3) guideline, which provides the plasma concentration data of various reference drugs in rodents, specifically Cmax and AUC for NOAEL and LOAEL. First, adverse effect concentrations of the reference drugs and their known metabolites on gastruloid development were determined based on morphological impact, namely reduced growth or aberrant elongation. Then, the NOAEL to LOAEL concentration range obtained from the gastruloid assay was compared with that in rodents to examine similarities in sensitivity between the in vitro and in vivo assays for each chemical. For 18 out of the 24 reference drugs that have both NOAEL and LOAEL information in rodents, the sensitivity of the gastruloid assay was comparable to the in vivo assay within an 8-fold concentration margin. For 7 out of the 8 additional reference drugs that have only NOAEL or LOAEL information in rodents, the gastruloid assay was in line with the in vivo data. Altogether, these results support the effectiveness of the gastruloid assay, which may be exploited as a non-animal alternative method for DART assessment.


Assuntos
Reprodução , Testes de Toxicidade , Camundongos , Animais , Testes de Toxicidade/métodos , Nível de Efeito Adverso não Observado , Desenvolvimento Embrionário , Gastrulação
8.
Arch Toxicol ; 98(4): 1209-1224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311648

RESUMO

To meet the growing demand for developmental toxicity assessment of chemicals, New Approach Methodologies (NAMs) are needed. Previously, we developed two 3D in vitro assays based on human-induced pluripotent stem cells (hiPSC) and cardiomyocyte differentiation: the PluriBeat assay, based on assessment of beating differentiated embryoid bodies, and the PluriLum assay, a reporter gene assay based on the expression of the early cardiac marker NKX2.5; both promising assays for predicting embryotoxic effects of chemicals and drugs. In this work, we aimed to further describe the predictive power of the PluriLum assay and compare its sensitivity with PluriBeat and similar human stem cell-based assays developed by others. For this purpose, we assessed the toxicity of a panel of ten chemicals from different chemical classes, consisting of the known developmental toxicants 5-fluorouracil, all-trans retinoic acid and valproic acid, as well as the negative control compounds ascorbic acid and folic acid. In addition, the fungicides epoxiconazole and prochloraz, and three perfluoroalkyl substances (PFAS), PFOS, PFOA and GenX were tested. Generally, the PluriLum assay displayed higher sensitivity when compared to the PluriBeat assay. For several compounds the luminescence readout of the PluriLum assay showed effects not detected by the PluriBeat assay, including two PFAS compounds and the two fungicides. Overall, we find that the PluriLum assay has the potential to provide a fast and objective detection of developmental toxicants and has a level of sensitivity that is comparable to or higher than other in vitro assays also based on human stem cells and cardiomyocyte differentiation for assessment of developmental toxicity.


Assuntos
Fluorocarbonos , Fungicidas Industriais , Células-Tronco Pluripotentes Induzidas , Humanos , Testes de Toxicidade/métodos , Corpos Embrioides , Diferenciação Celular , Substâncias Perigosas
9.
Microb Pathog ; 189: 106589, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382627

RESUMO

Comprehensive safety assessment of potential probiotic strains is crucial in the selection of risk-free strains for clinical translation. This study aimed to evaluate the biosafety of Limosilactobacillus fermentum NCDC 400, a potential probiotic strain, using oral toxicity tests in a Swiss albino mouse model. Mice were orally gavaged with low (108 CFU/mouse/day) and high (1010 CFU/mouse/day) doses of NCDC 400 for 14 (acute), 28 (subacute), and 90 (subchronic) days to assess behavioral, hematological, biochemical, immunological, and histological effects. The administration of NCDC 400 did not result in any observable adverse effects on general health parameters, including body weight, feed and water intake, and organ indices. Hematological and biochemical parameters, such as glucose, serum enzymes, urea, creatinine, serum minerals, total serum proteins, and lipid profile, remained largely unaffected by the test strain. Notably, NCDC 400 administration led to a significant reduction in harmful intestinal enzymes and improvement in gut health indices, as indicated by fecal pH, lactate, ammonia, and short-chain fatty acids. There were no instances of bacterial translocation of NCDC 400 to blood or extra-intestinal organs. Immune homeostasis was not adversely affected by repeated exposure to NCDC 400 in all three oral toxicity studies. Histopathological examination revealed no strain-related changes in various tissues. Based on these findings, a dose of 1010 CFU/mouse/day was considered as the No Observable Effect Level (NOEL) in healthy mice. In conclusion, this study demonstrates the safe and non-toxic behavior of L. fermentum NCDC 400. The results support and ensure the safety and suitability for clinical trials and eventual translation into clinical practice as potential probiotic.


Assuntos
Limosilactobacillus fermentum , Probióticos , Camundongos , Animais , Modelos Animais de Doenças , Probióticos/metabolismo , Testes de Toxicidade
10.
Chem Res Toxicol ; 37(3): 513-524, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38380652

RESUMO

The research on acute dermal toxicity has consistently been a crucial component in assessing the potential risks of human exposure to active ingredients in pesticides and related plant protection products. However, it is difficult to directly identify the acute dermal toxicity of potential compounds through animal experiments alone. In our study, we separately integrated 1735 experimental data based on rabbits and 1679 experimental data based on rats to construct acute dermal toxicity prediction models using machine learning and deep learning algorithms. The best models for the two animal species achieved AUC values of 78.0 and 82.0%, respectively, on 10-fold cross-validation. Additionally, we employed SARpy to extract structural alerts, and in conjunction with Shapley additive explanation and attentive FP heatmap, we identified important features and structural fragments associated with acute dermal toxicity. This approach offers valuable insights for the detection of positive compounds. Moreover, a standalone software tool was developed to make acute dermal toxicity prediction easier. In summary, our research would provide an effective tool for acute dermal toxicity evaluation of pesticides, cosmetics, and drug safety assessment.


Assuntos
Cosméticos , Praguicidas , Humanos , Ratos , Coelhos , Animais , Testes de Toxicidade , Cosméticos/química
11.
Environ Toxicol Chem ; 43(4): 723-735, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38411309

RESUMO

Hyalella azteca is an epibenthic crustacean used in ecotoxicology, but there are challenges associated with standard methods using reproduction as an endpoint. A novel, 28-day reproduction toxicity test method for H. azteca was created to address these issues by initiating tests with sexually mature amphipods to eliminate the confounding effects of growth, using a sex ratio of seven females to three males to reduce reproductive variability, and conducting tests in water-only conditions to make recovery of juveniles easier and expand testing capabilities to water-soluble compounds. In the present study, we evaluated the 28-day novel method by comparing it with the 42-day standard test method in duplicate and parallel water-only, static-renewal exposures to sublethal concentrations of imidacloprid (0.5-8 µg/L). Both methods showed similar effects on survival, with survival approaching 50% in the highest test concentration (8 µg/L). However, the 42-day median effect concentrations (EC50s) for growth were more sensitive in the standard method (1.5-3.2 µg/L) compared with the 28-day EC50s generated by the novel method (>8 µg/L). Reproduction endpoints (juveniles/female) produced similar EC50s between methods, but the data were less variable in novel tests (smaller coefficients of variation); therefore, fewer replicates would be required to detect effects on reproduction compared with the standard method. In addition, novel tests generated 28 days of reproduction data compared with 14 days using standard tests and allowed survival and growth of sexes to be assessed independently. Thus, the novel method shows promise to improve the use of reproduction as an endpoint in water-only toxicity tests with H. azteca. Environ Toxicol Chem 2024;43:723-735. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Anfípodes , Formigas , Neonicotinoides , Nitrocompostos , Poluentes Químicos da Água , Animais , Feminino , Poluentes Químicos da Água/análise , Testes de Toxicidade/métodos , Reprodução , Água
12.
Regul Toxicol Pharmacol ; 148: 105579, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309424

RESUMO

Chemical safety assessment begins with defining the lowest level of chemical that alters one or more measured endpoints. This critical effect level, along with factors to account for uncertainty, is used to derive limits for human exposure. In the absence of data regarding the specific mechanisms or biological pathways affected, non-specific endpoints such as body weight and non-target organ weight changes are used to set critical effect levels. Specific apical endpoints such as impaired reproductive function or altered neurodevelopment have also been used to set chemical safety limits; however, in test guidelines designed for specific apical effect(s), concurrently measured non-specific endpoints may be equally or more sensitive than specific endpoints. This means that rather than predicting a specific toxicological response, animal data are often used to develop protective critical effect levels, without assuming the same change would be observed in humans. This manuscript is intended to encourage a rethinking of how adverse chemical effects are interpreted: non-specific endpoints from in vivo toxicological studies data are often used to derive points of departure for use with safety assessment factors to create recommended exposure levels that are broadly protective but not necessarily target-specific.


Assuntos
Testes de Toxicidade , Animais , Humanos , Medição de Risco
13.
Pharmacol Rev ; 76(2): 251-266, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351072

RESUMO

Animals and animal models have been invaluable for our current understanding of human and animal biology, including physiology, pharmacology, biochemistry, and disease pathology. However, there are increasing concerns with continued use of animals in basic biomedical, pharmacological, and regulatory research to provide safety assessments for drugs and chemicals. There are concerns that animals do not provide sufficient information on toxicity and/or efficacy to protect the target population, so scientists are utilizing the principles of replacement, reduction, and refinement (the 3Rs) and increasing the development and application of new approach methods (NAMs). NAMs are any technology, methodology, approach, or assay used to understand the effects and mechanisms of drugs or chemicals, with specific focus on applying the 3Rs. Although progress has been made in several areas with NAMs, complete replacement of animal models with NAMs is not yet attainable. The road to NAMs requires additional development, increased use, and, for regulatory decision making, usually formal validation. Moreover, it is likely that replacement of animal models with NAMs will require multiple assays to ensure sufficient biologic coverage. The purpose of this manuscript is to provide a balanced view of the current state of the use of animal models and NAMs as approaches to development, safety, efficacy, and toxicity testing of drugs and chemicals. Animals do not provide all needed information nor do NAMs, but each can elucidate key pieces of the puzzle of human and animal biology and contribute to the goal of protecting human and animal health. SIGNIFICANCE STATEMENT: Data from traditional animal studies have predominantly been used to inform human health safety and efficacy. Although it is unlikely that all animal studies will be able to be replaced, with the continued advancement in new approach methods (NAMs), it is possible that sometime in the future, NAMs will likely be an important component by which the discovery, efficacy, and toxicity testing of drugs and chemicals is conducted and regulatory decisions are made.


Assuntos
Testes de Toxicidade , Animais , Humanos , Testes de Toxicidade/métodos , Modelos Animais
14.
Environ Int ; 184: 108415, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309193

RESUMO

An increasing number of harmful environmental factors are causing serious impacts on human health, and there is an urgent need to accurately identify the toxic effects and mechanisms of these harmful environmental factors. However, traditional toxicity test methods (e.g., animal models and cell lines) often fail to provide accurate results. Fortunately, organoids differentiated from stem cells can more accurately, sensitively and specifically reflect the effects of harmful environmental factors on the human body. They are also suitable for specific studies and are frequently used in environmental toxicology nowadays. As a combination of organoids and organ-on-a-chip technology, organoids-on-a-chip has great potential in environmental toxicology. It is more controllable to the physicochemical microenvironment and is not easy to be contaminated. It has higher homogeneity in the size and shape of organoids. In addition, it can achieve vascularization and exchange the nutrients and metabolic wastes in time. Multi-organoids-chip can also simulate the interactions of different organs. These advantages can facilitate better function and maturity of organoids, which can also make up for the shortcomings of common organoids to a certain extent. This review firstly discussed the limitations of traditional toxicology testing platforms, leading to the introduction of new platforms: organoids and organoids-on-a-chip. Next, the applications of different organoids and organoids-on-a-chip in environmental toxicology were summarized and prospected. Since the advantages of the new platforms have not been sufficiently considered in previous literature, we particularly emphasized them. Finally, this review also summarized the opportunities and challenges faced by organoids and organoids-on-a-chip, with the expectation that readers will gain a deeper understanding of their value in the field of environmental toxicology.


Assuntos
Ecotoxicologia , Sistemas Microfisiológicos , Animais , Humanos , Dispositivos Lab-On-A-Chip , Organoides , Testes de Toxicidade
15.
Sci Total Environ ; 917: 170206, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38278271

RESUMO

To account for potential differences in bioavailability (and toxicity) due to different soil organic matter (OM) contents in natural and artificial soil (AS), in the current European environmental risk assessment (ERA) a correction factor (CF) of 2 is applied to toxicity endpoints for so called lipophilic pesticides (i.e. log Kow > 2) generated from laboratory tests with soil invertebrates. However, the appropriateness of a single CF is questioned. To improve the accuracy of ERA, this study investigated the influence of soil OM content on the toxicity to the earthworm Eisenia andrei of five active substances used in pesticides covering a wide range of lipophilicity. Laboratory toxicity tests were performed in AS containing 10 %, 5 % and 2.5 % peat, and a natural LUFA 2.2 soil (4.5 % OM), assessing effects on survival, biomass change and reproduction. Pesticide toxicity differed significantly between soils. For all pesticides, toxicity values (LC50, EC50) strongly correlated with soil OM content in AS (r2 > 0.82), with toxicity decreasing with increasing OM content. Obtained regression equations were used to calculate the toxicity at OM contents of 10.0 % and 5.0 %. Model-estimated toxicity between these soils differed by factors of 1.9-3.6, and 2.1-3.2 for LC50 and EC50 values, respectively. No clear relationships between pesticide lipophilicity and toxicity-OM relationships were observed: the toxicity of non-lipophilic and lipophilic pesticides was influenced by OM content in a similar manner. The results suggest that the CF of 2 may not be appropriate as it is based on incorrect assumptions regarding the relationships between lipophilicity, OM content and toxicity. Further research should be conducted to understand the mechanistic link between toxicity and soil OM content to better define more chemically and ecologically appropriate CFs for ERA.


Assuntos
Oligoquetos , Praguicidas , Poluentes do Solo , Animais , Praguicidas/toxicidade , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Testes de Toxicidade
16.
Altern Lab Anim ; 52(2): 117-131, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38235727

RESUMO

The first Stakeholder Network Meeting of the EU Horizon 2020-funded ONTOX project was held on 13-14 March 2023, in Brussels, Belgium. The discussion centred around identifying specific challenges, barriers and drivers in relation to the implementation of non-animal new approach methodologies (NAMs) and probabilistic risk assessment (PRA), in order to help address the issues and rank them according to their associated level of difficulty. ONTOX aims to advance the assessment of chemical risk to humans, without the use of animal testing, by developing non-animal NAMs and PRA in line with 21st century toxicity testing principles. Stakeholder groups (regulatory authorities, companies, academia, non-governmental organisations) were identified and invited to participate in a meeting and a survey, by which their current position in relation to the implementation of NAMs and PRA was ascertained, as well as specific challenges and drivers highlighted. The survey analysis revealed areas of agreement and disagreement among stakeholders on topics such as capacity building, sustainability, regulatory acceptance, validation of adverse outcome pathways, acceptance of artificial intelligence (AI) in risk assessment, and guaranteeing consumer safety. The stakeholder network meeting resulted in the identification of barriers, drivers and specific challenges that need to be addressed. Breakout groups discussed topics such as hazard versus risk assessment, future reliance on AI and machine learning, regulatory requirements for industry and sustainability of the ONTOX Hub platform. The outputs from these discussions provided insights for overcoming barriers and leveraging drivers for implementing NAMs and PRA. It was concluded that there is a continued need for stakeholder engagement, including the organisation of a 'hackathon' to tackle challenges, to ensure the successful implementation of NAMs and PRA in chemical risk assessment.


Assuntos
Rotas de Resultados Adversos , Inteligência Artificial , Animais , Humanos , Testes de Toxicidade , Medição de Risco , Bélgica
17.
Toxicol Lett ; 393: 57-68, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219808

RESUMO

Dicyclopentadiene (DCPD) was investigated in a 14-day oral rat toxicity study based on the OECD 407 guideline in combination with plasma metabolomics. Wistar rats received the compound daily via gavage at dose levels of 0, 50 and 150 mg/kg bw. The high dose induced transient clinical signs of toxicity and in males only reduced body weight gain. High dose liver changes were characterized by altered clinical chemistry parameters in both sexes and pathological changes in females. In high dose males an accumulation of alpha-2 u-globulin in the kidney was noted. Comparing the DCPD metabolome with previously established specific metabolome patterns in the MetaMap® Tox data base suggested that the high dose would result in liver enzyme induction leading to increased breakdown of thyroid hormones for males and females. An indication for liver toxicity in males was also noted. Metabolomics also suggested an effect on the functionality of the adrenals in high dose males, which together with published data, is suggestive of a stress related effect in this organ. The results of the present 14-day combined toxicity and metabolome investigations were qualitatively in line with literature data from subchronic oral studies in rats with DCPD. Importantly no other types of organ toxicity, or hormone dysregulation beyond the ones associated with liver enzyme induction and stress were indicated, again in line with results of published 90-day studies. It is therefore suggested that short term "smart" studies, combining classical toxicity with 'omics technologies, could be a 2 R (refine and reduce) new approach method allowing for the reduction of in vivo toxicity testing.


Assuntos
Indenos , Metaboloma , Masculino , Feminino , Ratos , Animais , Ratos Wistar , Testes de Toxicidade
18.
Chemosphere ; 350: 141097, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171392

RESUMO

Deep eutectic solvents (DESs) are preferable in terms of starting materials, storage and synthesis, simplicity, and component material affordability. In several industries ranging from chemical, electrochemical, biological, biotechnology, material science, etc., DES has demonstrated remarkable potential. Despite all these accomplishments, the safety issue with DES must be adequately addressed. Different DES interacts with the cellular membranes differently. It is not possible to classify all DES as easily biodegradable. By expanding the current understanding of the toxicity and biodegradation of DES, interactions between organisms and cellular membranes can be linked. The DES toxicity profile varies according to their concentration, the nature of the individual components, and how they interact with living things. Therefore, the results of this review can serve as a baseline for DES development in the future.


Assuntos
Biotecnologia , Solventes Eutéticos Profundos , Solventes/toxicidade , Solventes/química , Testes de Toxicidade
19.
Food Chem Toxicol ; 184: 114438, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191119

RESUMO

Toxicity testing of botanicals is challenging because of their chemical complexity and variability. Since botanicals may affect many different modes of action involved in neuronal function, we used microelectrode array (MEA) recordings of primary rat cortical cultures to screen 16 different botanical extracts for their effects on cell viability and neuronal network function in vitro. Our results demonstrate that extract materials (50 µg/mL) derived from goldenseal, milk thistle, tripterygium, and yohimbe decrease mitochondrial activity following 7 days exposure, indicative of cytotoxicity. Importantly, most botanical extracts alter neuronal network function following acute exposure. Extract materials (50 µg/mL) derived from aristolochia, ephedra, green tea, milk thistle, tripterygium, and usnea inhibit neuronal activity. Extracts of kava, kratom and yohimbe are particularly potent and induce a profound inhibition of neuronal activity at the low dose of 5 µg/mL. Extracts of blue cohosh, goldenseal and oleander cause intensification of the bursts. Aconite extract (5 µg/mL) evokes a clear hyperexcitation with a marked increase in the number of spikes and (network) bursts. The distinct activity patterns suggest that botanical extracts have diverse modes of action. Our combined data also highlight the applicability of MEA recordings for hazard identification and potency ranking of botanicals.


Assuntos
Hydrastis , Extratos Vegetais , Animais , Ratos , Microeletrodos , Extratos Vegetais/toxicidade , Testes de Toxicidade , Neurônios
20.
Science ; 383(6680): 248, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38236983

RESUMO

U.S. environmental agency's hard deadline had split scientific community.


Assuntos
Experimentação Animal , Segurança Química , Testes de Toxicidade , United States Environmental Protection Agency , Animais , Mamíferos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...